Chapter 48.

Nervous System
Why do animals need a nervous system?

Remember to think about the bunny...
What characteristics do animals need in a nervous system?

- fast
- accurate
- reset quickly

Poor bunny!
Nervous system cells

- **Neuron**
 - a nerve cell

- **Structure fits function**
 - many entry points for signal
 - one path out
 - transmits signal

Dendrites → cell body → axon
Fun facts about neurons

- Most specialized cell in animals
- Longest cell:
 - blue whale neuron
 - 10-30 meters
 - giraffe axon
 - 5 meters
 - human neuron
 - 1-2 meters

Nervous system allows for 1 millisecond response time
Transmission of a signal

- How is a signal transmitted down neuron?

Think Dominoes!
Transmission of a signal

- **Dominoes**
 - **start the signal**
 - knock down line of dominoes by tipping 1st one
 → send message
 - **propagate the signal**
 - do dominoes move down the line?
 → no, just a wave through them!
 - **re-set the system**
 - before you can do it again, have to set up dominoes again
 → reset the axon
Transmission of a nerve signal

- Neuron has similar system
 - channels are set up
 - once 1st is opened, the rest open in succession
 - all or nothing response
 - an action travels along neuron
 - have to re-set channels so neuron can react again
Cells: surrounded by charged ions

- Cells live in a sea of charged ions
 - anions (negative ions)
 - more concentrated within the cell
 - Cl⁻, charged amino acids
 - cations (positive ions)
 - more concentrated in the extracellular fluid
 - K⁺, Na⁺

channel leaks K⁺
Cells have voltage!

- Opposite charges on opposite sides of cell membrane
 - membrane is **polarized**
 - negative inside; positive outside
 - charge gradient
 - stored energy (like a battery)
Measuring cell voltage

unstimulated neuron = resting potential of -70mV
How does a nerve impulse travel?

- **Stimulus**: nerve is stimulated
 - open Na\(^+\) channels in cell membrane
 - reached threshold potential
 - membrane becomes very permeable to Na\(^+\)
 - Na\(^+\) ions diffuse into cell
 - charges reverse at that point on neuron
 - positive inside; negative outside
 - cell becomes depolarized
How does a nerve impulse travel?

- **Wave**: nerve impulse travels down neuron
 - change in charge opens other Na^+ gates in next section of cell
 - “voltage-gated” channels
 - Na^+ ions continue to move into cell
 - “wave” moves down neuron = action potential

The rest of the dominoes fall
How does a nerve impulse travel?

- **Re-set**: 2nd wave travels down neuron
 - \(K^+ \) channels open up slowly
 - \(K^+ \) ions diffuse **out of** cell
 - charges reverse back at that point
 - **negative** inside; **positive** outside

Set dominoes back up quickly

![Diagram of nerve impulse]

wave →
How does a nerve impulse travel?

- Combined waves travel down neuron
 - wave of opening ion channels moves down neuron
 - signal moves in one direction → → →
 - flow of K^+ out of cell stops activation of Na^+ channels in wrong direction

Ready for next time!
How does a nerve impulse travel?

- Action potential propagates
 - wave = nerve impulse, or action potential
 - brain → finger tips in milliseconds!

In the blink of an eye!
Voltage-gated channels

- Ion channels open & close in response to changes in charge across membrane
 - Na^+ channels open **quickly** in response to depolarization & close slowly
 - K^+ channels open **slowly** in response to depolarization & close slowly

Diagram:

- Na^+ channels and K^+ channels
- Depolarization wave

AP E
2005-2006
How does the nerve re-set itself?

- After firing a neuron has to re-set itself
 - Na^+ needs to move back \textbf{out}
 - K^+ needs to move back \textbf{in}
 - both are moving \textbf{against} concentration gradients
 - need a pump!!
How does the nerve re-set itself?

- **Na⁺ / K⁺ pump**
 - active transport protein in membrane
 - requires ATP
 - 3 Na⁺ pumped **out**
 - 2 K⁺ pumped **in**
 - re-set charge across membrane

That's a lot of ATP! Feed me some sugar quick!
Neuron is ready to fire again

resting potential
Action potential graph

1. Resting potential
2. Stimulus reaches threshold potential
3. Na⁺ channels open; K⁺ channels closed
4. Na⁺ channels close; K⁺ channels open
5. Undershoot: K⁺ channels close slowly
Myelin sheath

- **made of Schwann cells**
 - cells coat axon
 - insulate axon
 - saltatory conduction
 - signal hops from node to node
 - 150m/sec vs. 5m/sec
 (330mph vs. 11mph)

myelin sheath
Multiple Sclerosis
- immune system (T cells) attack myelin sheath
- loss of signal
What happens at the end of the axon?

Impulse has to jump the synapse!
- junction between neurons
- has to jump quickly from one cell to next

How does the wave jump the gap?
Synaptic terminal

- Chemicals stored in vesicles
 - release neurotransmitters
 - diffusion of chemical across synapse conducts the signal — chemical signal — across synapse
 - stimulus for receptors on dendrites of next neuron

We switched... from an electrical signal to a chemical signal
Chemical synapse: follow the path

- action depolarizes membrane
- triggers influx of Ca+
- vesicles fuse with membrane
- release neurotransmitter to cleft
- neurotransmitter bind with receptor
- neurotransmitter degraded / reabsorbed
Nerve impulse in next neuron

- Post-synaptic neuron
 - triggers nerve impulse in next nerve cell
 - chemical signal opens “ion-gated” channels
 - Na^+ diffuses into cell
 - K^+ diffuses out of cell

Here we go again!
<table>
<thead>
<tr>
<th>Neurotransmitter</th>
<th>Structure</th>
<th>Functional Class</th>
<th>Secretion Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylcholine</td>
<td></td>
<td>Excitatory to vertebrate skeletal muscles; excitatory or inhibitory at other sites</td>
<td>CNS; PNS; vertebrate neuromuscular junction</td>
</tr>
<tr>
<td>Biogenic Amines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norepinephrine</td>
<td></td>
<td>Excitatory or inhibitory</td>
<td>CNS; PNS</td>
</tr>
<tr>
<td>Dopamine</td>
<td></td>
<td>Generally excitatory; may be inhibitory at some sites</td>
<td>CNS; PNS</td>
</tr>
<tr>
<td>Serotonin</td>
<td></td>
<td>Generally inhibitory</td>
<td>CNS</td>
</tr>
<tr>
<td>Amino Acids</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GABA (gamma aminobutyric acid)</td>
<td></td>
<td>Inhibitory</td>
<td>CNS; invertebrate neuromuscular junction</td>
</tr>
<tr>
<td>Glycine</td>
<td></td>
<td>Inhibitory</td>
<td>CNS</td>
</tr>
<tr>
<td>Glutamate</td>
<td></td>
<td>Excitatory</td>
<td>CNS; invertebrate neuromuscular junction</td>
</tr>
<tr>
<td>Aspartate</td>
<td></td>
<td>Excitatory</td>
<td>CNS</td>
</tr>
<tr>
<td>Neuropeptides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Substance P</td>
<td></td>
<td>Excitatory</td>
<td>CNS; PNS</td>
</tr>
<tr>
<td>Met-enkephalin (an endorphin)</td>
<td></td>
<td>Generally inhibitory</td>
<td>CNS</td>
</tr>
</tbody>
</table>
Neurotransmitters

- **Acetylcholine**
 - transmit signal to skeletal muscle

- **Epinephrine (adrenaline) & norepinephrine**
 - fight-or-flight response

- **Dopamine**
 - widespread in brain
 - affects sleep, mood, attention & learning
 - lack of dopamine in brain associated with Parkinson’s disease
 - excessive dopamine linked to schizophrenia

- **Serotonin**
 - widespread in brain
 - affects sleep, mood, attention & learning
Neurotransmitters

- Weak point of nervous system
 - any substance that affects neurotransmitters or mimics them affects nerve function
 - gases: nitric oxide, carbon monoxide
 - mood altering drugs:
 - stimulants
 - amphetamines, caffeine, nicotine
 - depressants
 - hallucinogenic drugs
 - Prozac
 - poisons
Acetylcholinesterase

- Enzyme which breaks down neurotransmitter acetylcholine
 - inhibitors = neurotoxins
 - snake venom, sarin, insecticides
Simplest Nerve Circuit

- **Reflex**, or automatic response

 - rapid response
 - automated
 - signal only goes to spinal cord
 - adaptive value
 - essential actions
 - don’t need to think or make decisions about
 - blinking
 - balance
 - pupil dilation
 - startle
Questions to ponder...

- Why are axons so long?
- Why have synapses at all?
- How do “mind altering drugs” work?
 - caffeine, alcohol, nicotine, marijuana...
- Do plants have a nervous system?
 - Do they need one?
Any Questions??
Human brain

Forebrain
- Cerebrum
- Thalamus
- Hypothalamus

Midbrain
- Pons
- Medulla oblongata
- Cerebellum

Hindbrain

Cerebral cortex
Pituitary gland
Spinal cord
Evolutionary older structures

- Evolutionary older structures of the brain regulate essential autonomic & integrative functions
 - brainstem
 - pons
 - medulla oblongata
 - midbrain
 - cerebellum
 - thalamus, hypothalamus, epithalamus
Brainstem

- The “lower brain”
 - medulla oblongata
 - pons
 - midbrain

- Functions
 - homeostasis
 - coordination of movement
 - conduction of impulses to higher brain centers
Medulla oblongata & Pons

- Controls autonomic homeostatic functions
 - breathing
 - heart & blood vessel activity
 - swallowing
 - vomiting
 - digestion

- Relays information to & from higher brain centers
Midbrain

- Involved in the integration of sensory information
 - regulation of visual reflexes
 - regulation of auditory reflexes
Reticular Formation

- Sleep & wakefulness produces patterns of electrical activity in the brain
 - recorded as an **electroencephalogram (EEG)**
 - most dreaming during **REM** (rapid eye movement) sleep
Cerebrum

- Most highly evolved structure of mammalian brain
- Cerebrum divided
 - hemispheres
 - left = right side of body
 - right = left side of body
- Corpus callosum
 - major connection between 2 hemispheres
Lateralization of Brain Function

- **Left hemisphere**
 - language, math, logic operations, processing of serial sequences of information, visual & auditory details
 - detailed activities required for motor control

- **Right hemisphere**
 - pattern recognition, spatial relationships, non-verbal ideation, emotional processing, parallel processing of information
Cerebrum specialization

- Regions of the cerebrum are specialized for different functions

- Lobes
 - frontal
 - temporal
 - occipital
 - parietal
Limbic system

Mediates basic emotions (fear, anger), involved in emotional bonding, establishes emotional memory

Amygdala involved in recognizing emotional content of facial expression
Any Questions??