

Chapter 48.

Nervous System

Why do animals need a nervous system?

What characteristics do animals need in a nervous system?

- fast
- accurate
- reset quickly

Fun facts about neurons

- Most specialized cell in animals
- Longest cell:
 - blue whale neuron
 - 10-30 meters
 - giraffe axon
 - 5 meters
 - human neuron
 - 1-2 meters

Nervous system allows for 1 millisecond response time

Transmission of a signal

How is a signal transmitted down neuron?

Think Dominoes!

AP Biology

2005-2006

Transmission of a signal

- Dominoes
 - start the signal
 - knock down line of dominoes by tipping 1st one
 send message
 - propagate the signal
 - do dominoes move down the line?
 - \rightarrow no, just a wave through them!
 - re-set the system
 - before you can do it again, have to set up dominoes again
 - → reset the axon

Transmission of a nerve signal

- Neuron has similar system
 - channels are set up
 - once 1st is opened, the rest open in succession
 - all or nothing response
 - an action travels along neuron
 - have to re-set channels so neuron can react again

Cells have voltage!

- Opposite charges on opposite sides of cell membrane
 - membrane is polarized
 - negative inside; positive outside
 - charge gradient
 - stored energy (like a battery)

AP Biology

Measuring cell voltage

unstimulated neuron = <u>resting potential</u> of <u>-70mV</u>

AP Biology

2005-2006

Voltage-gated channels

- Ion channels open & close in response to changes in charge across membrane
 - Na⁺ channels open <u>quickly</u> in response to depolarization & close slowly
 - K⁺ channels open <u>slowly</u> in response to depolarization & close slowly

AP E

How does the nerve re-set itself?

After firing a neuron has to re-set itself

- Na⁺ needs to move back <u>out</u>
- K⁺ needs to move back in
- both are moving <u>against</u> concentration gradients
 - need a pump!!

How does the nerve re-set itself?

- Na⁺ / K⁺ pump
 - active transport protein in membrane
 - requires ATP
 - ♦ 3 Na⁺ pumped <u>out</u>
 - ◆ 2 K⁺ pumped in
 - re-sets charge across membrane

Action potential graph

- **1.** Resting potential
- **2.** Stimulus reaches threshold potential
- **3.** Na⁺ channels open; K⁺ channels closed
- **4.** Na⁺ channels close; K⁺ channels open
- **5.** Undershoot: K⁺ channels close slowly

Myelin sheath

made of Schwann cells

cells coat axon

myelin sheath

- insulate axon
- saltatory conduction
 - signal hops from node to node
- 150m/sec vs. 5m/sec (330mph vs. 11mph)

AP Biology

signal

direction

What happens at the end of the axon?

Synaptic terminal Chemicals stored in vesicles release neurotransmitters diffusion of chemical across synapse conducts the signal — <u>chemical signal</u> — across synapse stimulus for receptors on dendrites of next neuron synaptic terminal We switched from an neurotransmitter electrical signal to a chemical chemicals signal

Neurotransmitter	Structure	Functional Class	Secretion Sites
Acetylcholine	0 II H ₃ C—C—O—CH ₂ —CH ₂ —N*—ICH ₃ I ₃	Excitatory to vertebrate skeletal muscles; excitatory or inhibitory at other sites	CNS; PNS; vertebrate neuromuscular junction
Biogenic Amines Norepinephrine		Excitatory or inhibitory	CNS; PNS
Dopamine	H0	Generally excitatory; may be inhibitory at some sites	CNS; PNS
Serotonin		Generally inhibitory	CNS
Amino Acids			
GABA (gamma aminobutyric acid)	H ₂ NCH ₂ CH ₂ COOH	Inhibitory	CNS; invertebrate neuromuscular junction
Glycine	H ₂ NCH ₂ COOH	Inhibitory	CNS
Glutamate	H ₂ N-CH-CH ₂ -CH ₂ -COOH	Excitatory	CNS; invertebrate neuromuscular junction
Aspartate	H ₂ N-CH-CH ₂ -C00H I C00H	Excitatory	CNS
Neuropeptides			
Substance P	Arg-Pro-Lys-Pro-GIn-Gin-Phe-Phe-Gly-Leu-Met	Excitatory	CNS; PNS
Met-enkephalin (an endorphin)	Tyr-Gly-Gly-Phe-Met	Generally inhibitory	CNS

Neurotransmitters

- Acetylcholine
 - transmit signal to skeletal muscle
- Epinephrine (adrenaline) & norepinephrine
 - fight-or-flight response
- Dopamine
 - widespread in brain
 - affects sleep, mood, attention & learning
 - lack of dopamine in brain associated with Parkinson's disease
 - excessive dopamine linked to schizophrenia
- Serotonin
 - widespread in brain
 - affects sleep, mood, attention & learning

AP Bi

Neurotransmitters

- Weak point of nervous system
 - any substance that affects neurotransmitters or mimics them affects nerve function
 - gases: nitric oxide, carbon monoxide
 - mood altering drugs:
 - stimulants
 - amphetamines, caffeine, nicotine
 - depressants
 - hallucinogenic drugs
 - Prozac
 - poisons

Acetylcholinesterase

- Enzyme which breaks down neurotransmitter acetylcholine
 - inhibitors = neurotoxins
 - snake venom, sarin, insecticides

Simplest Nerve Circuit

Reflex, or automatic response

2005-2006

Questions to ponder...

- Why are axons so long?
- Why have synapses at all?
- How do "mind altering drugs" work?
 caffeine, alcohol, nicotine, marijuana...
- Do plants have a nervous system?
 - Do they need one?

Any Questions??

AP Biology

2005-2006

Evolutionary older structures

- Evolutionary older structures of the brain regulate essential autonomic & integrative functions
 - brainstem
 - pons
 - medulla oblongata
 - midbrain
 - cerebellum
 - thalamus, hypothalamus, epithalamus

Medulla oblongata & Pons

- Controls autonomic homeostatic functions
 - breathing
 - heart & blood vessel activity
 - swallowing
 - vomiting
 - digestion
- Relays information to & from higher brain centers

Midbrain

- Involved in the integration of sensory information
 - regulation of visual reflexes

regulation of auditory
 reflexes

Reticular Formation

- Sleep & wakefulness produces patterns of electrical activity in the brain
 - recorded as an <u>electroencephalogram</u>
 (EEG)
 - most dreaming during <u>REM</u> (rapid eye movement) sleep

(b) Awake but quiet (alpha waves)

(c) Awake during intense mental activity (beta waves)

(d) Asleep

AP Biology

Cerebrum

- Most highly evolved structure of mammalian brain
- Cerebrum divided
 - hemispheres
 - Ieft = right side of body
 - right = left side of body
- Corpus callosum
 - major connection
 between 2 hemispheres

(a) Back of brain

AP Biology

Lateralization of Brain Function

Left hemisphere

- language, math, logic operations, processing of serial sequences of information, visual & auditory details
- detailed activities required for motor control

Right hemisphere

 pattern recognition, spatial relationships, non-verbal ideation, emotional processing, parallel processing of information

(a) Back of brain

Cerebrum specialization

- Regions of the cerebrum are specialized for different functions
- Lobes
 - frontal
 - temporal
 - occipital
 - parietal

AP Biology

2005-2006

Limbic system

Mediates <u>basic emotions</u> (fear, anger), involved in emotional bonding, establishes emotional memory

Any Questions??

AP Biology

2005-2006