alveoli

Gas Exchange

AP Biology

Optimizing gas exchange

- Why high surface area?
 - maximizing rate of gas exchange
 - CO₂ & O₂ move across cell membrane by diffusion
 - rate of diffusion proportional to surface area
- Why moist membranes?
 - moisture maintains cell membrane structure
 - gases diffuse only dissolved in water

Gas exchange in many forms...

Evolution of gas exchange structures

Aquatic organisms

<u>external</u> systems with lots of surface area exposed to aquatic environment

(a) Sea star

(b) Marine worm

Terrestrial

moist <u>internal</u> respiratory surfaces with lots of surface area AP Biology

es e

(c) Scallop

(d) Crayfish

Gas Exchange in Water: Gills

AP Bi (a) Fish

2005-2006

How counter current exchange works

- Blood & water flow in opposite directions
- Maintains <u>diffusion gradient</u> over whole length of gill capillary

maximizing O₂ transfer from water to blood

Gas Exchange on Land

Advantages of terrestrial life

land animals

use gills?

2005

- air has many advantages over water
 - higher concentration of O₂
 - O₂ & CO₂ diffuse much faster through air
 - respiratory surfaces exposed to air do not have to be ventilated as thoroughly as gills
 - air is much lighter than water & therefore much easier to pump
 Why don't
 - expend less energy moving air in & out
- Disadvantages
 - keeping large respiratory surface moist causes high water loss

AP Biology

Terrestrial adaptations

Tracheae

- air tubes branching throughout body
- gas exchanged by diffusion across moist cells lining terminal ends, <u>not</u> through open circulatory system

How is this adaptive?

Lungs

spongy texture, honeycombed with moist epithelium

Alveoli

Gas exchange across thin epithelium of millions of alveoli

total surface area in humans ~100 m²

Mechanics of breathing

- Air enters nostrils
 - filtered by hairs, warmed & humidified
 - sampled for odors
- Pharynx → glottis → larynx (vocal cords) → trachea (windpipe) → bronchi → bronchioles → air sacs (alveoli)
- Epithelial lining covered by cilia & thin film of mucus
 - mucus traps dust, pollen, particulates
 - beating cilia move mucus upward to pharynx, where it is swallowed

Negative pressure breathing

Breathing due to changing pressures in lungs

- air flows from higher pressure to lower pressure
- pulling air instead of pushing it

Positive pressure breathing

Frogs

 draw in air through nostrils, fill mouth, with mouth & nose closed, air is forced down the trachea

AP Biology

Autonomic breathing control

- Medulla sets rhythm & pons moderates it
 - coordinate respiratory, cardiovascular systems & metabolic demands
- Nerve sensors in ' walls of aorta & carotid arteries in neck detect O₂ & CO₂ in blood

Medulla monitors blood

- Monitors CO₂ level of blood
 - measures pH of blood & cerebrospinal fluid bathing brain
 - $CO_2 + H_2O \rightarrow H_2CO_3$ (carbonic acid)
 - if pH decreases then increase depth & rate of breathing & excess CO₂ is eliminated in exhaled air

AP Biology

2005-2006

Pressure gradients

006

Hemoglobin

Why use a carrier molecule?

♦ O₂ not soluble enough in H₂O for animal needs

Oxygen (O₂)

- hemocyanin in insects = copper (bluish)
- hemoglobin in vertebrates = iron (reddish)
- Reversibly binds O₂
 - loading O₂ at lungs or gills & unloading in other parts of body

Hemoglobin

Binding O₂

- loading & unloading from Hb protein depends on cooperation among protein's subunits
- binding of O₂ to 1 subunit induces remaining subunits to change shape slightly increasing affinity for O₂

Releasing O₂

AP Biolo

 when 1 subunit releases
O₂, other 3 quickly follow as shape change lowers affinity for O₂

O₂ dissociation curves for hemoglobin

- drop in pH lowers affinity of Hb for O₂
- active tissue (producing CO₂) lowers blood pH
- APE & induces Hb to release more O₂

Transporting CO₂ in blood

- Dissolved in blood plasma
- Bound to Hb protein
- Bicarbonate ion (HCO₃⁻) & carbonic acid (H₂CO₃) in RBC
- enzyme: carbonic anhydrase reduces CO₂

AP

Adaptations for pregnancy

Mother & fetus exchange O₂ across placental tissue

why would mothers Hb give up its O₂ to baby's Hb?

Fetal hemoglobin HbF has greater affinity to O₂ than Hb ♦ low O₂% by time blood reaches placenta fetal Hb must be able to bind O₂ with greater attraction than maternal Hb 100 95.8 Fetal hemoglobin Adult hemoglobin Percent saturation (sO2, %) 50 What is the adaptive advantage? 0 19 26.8 40 80 120 2 alpha & 2 gamma units Oxygen partial pressure (pO,, mmHg)

Any Questions??

AP Biology

2005-2006