Chapter 49.

AP Biology

Animal Locomotion

What are the advantages of locomotion?

sessile motile

AP Biology 2005-2006

Organization of Skeletal muscle

Muscles movement

- Muscles do work by contracting
 - skeletal muscles come in antagonistic pairs
 - flexor vs. extensor
 - contracting = shortening
 - move skeletal parts
 - tendons
 - connect bone to muscle
 - ◆ ligaments
 - connect bone to bone

Striated skeletal muscle

A band = thick filaments = myosin

I band = thin filaments = actin

Structure of skeletal muscle

Sarcomere

functional unit of muscle contraction

alternating bands
 of thin & thick
 filaments

Sliding Filament mechanism

Muscle filaments & Sarcomere

Interacting <u>proteins</u>

- thin filaments
 - braided strands of actin & tropomyosin coiled together
- thick filaments
 - myosin molecules

Thin filaments: actin

- Proteins
 - braid of actin & tropomyosin molecules
 - dotted with troponin molecules

Thick filaments: myosin

- Protein
 - myosin molecule
 - long protein with globular head
 Myosin head

Myosin molecule

(a)

bundle of myosin proteins: globular heads aligned together

Thick & thin filaments

Myosin tails together & heads pointed away from center of sarcomere

Portion of a sarcomere showing the overlap of thick and thin filaments

Interaction of thick & thin filaments

 Cross bridges formed between myosin heads (thick filaments) & actin (thin flaments) cause the muscle to shorten (contract)

Cross bridge cycle

Binding site Cleaving **ATP allows** Myosin Thin filament ADP head myosin head (actin) (a) to bind to Thick actin filament (myosin) filament ATP Crossbridge (d) (b) (c) **AP Biology**

How a muscle works

- Myosin pulls actin chain along toward center of sarcomere
- Sarcomere <u>shortens</u>
 (Z lines move closer together)
- Muscle contracts
 - energy from:
 - ATP
 - glycogen
 - creatine phosphate

(c) Muscle contracted

Closer look at muscle cell

Sarcoplasmic reticulum

- Sarcoplasm
 - muscle cell cytoplasm
 - contains many mitochondria
- Sarcoplasmic reticulum (SR)
 - organelle similar to ER
 - network of tubes
 - ◆ stores Ca⁺²
 - Ca⁺² released from SR through channels
 - Ca⁺² pumps then restore Ca⁺² to SR
 - remove Ca⁺² from cytosol
 - pumps use ATP

AP Biology

Muscle at rest

- Interacting proteins
 - at rest, <u>troponin</u> molecules hold <u>tropomyosin</u> molecules so that they cover the myosin-binding sites on actin

(a) Myosin binding sites blocked; muscle cannot contract

The Trigger: motor neurons

Motor neuron triggers muscle contraction

Nerve trigger of muscle action

Nerve signal Motor neurol stimulates muscle cell's sarcoplasmic reticulum (SR) to release stored to release stored Ca+2

Ca⁺² triggers muscle action

Actin

At rest, <u>tropomyosin</u>
 blocks myosin-binding
 sites on actin

 Ca⁺² binds to troponin complex

shape change (a)
 causes movement
 of tropomyosin troponin complex

exposes actin's myosin-binding sites

Ca²⁺ binding sites

Troponin complex

(b) Myosin binding sites exposed; muscle can contract

How Ca⁺² controls muscle

- Sliding filament model
 - ratchet system

(a) Binding sites for cross-bridges blocked

once myosin-binding sites on actin are uncovered, myosin heads bond to actin

Sliding filament model

- Ratchet system
 - myosin bonding with actin
 - sliding thin & thick filaments past each other
 - myosin head releases & binds to next active site on actin
 - muscle doesn't relax until Ca⁺² is pumped back into SR

"Walk-along" Mechanism for contraction of the muscle

How it all works...

- Action potential causes <u>Ca+2</u> release from SR
 - ◆ Ca⁺² binds to <u>troponin</u>
- Troponin moves <u>tropomyosin</u>
- Tropomyosin uncovers <u>myosin binding site</u> on actin
- Myosin binds <u>actin</u>
 - uses ATP to "rachet" once
 - releases, "unratchets" & binds to next actin
- Myosin pulls actin chain along
- Sarcomere shortens
 - ◆ Z discs move closer together
- Whole fiber shortens → contraction!
- Ca⁺² pumps restore Ca⁺² to SR → <u>relaxation</u>!
 - pumps use ATP

Fast twitch & slow twitch muscles

- Slow twitch muscle fibers
 - contract slowly, but keep going for a long time
 - more mitochondria for aerobic respiration
 - less SR → Ca⁺² remains in cytosol longer
 - long distance runner
 - "dark" meat = more blood vessels
- Fast twitch muscle fibers
 - contract quickly, but get tired rapidly
 - store more glycogen for anaerobic respiration
 - ◆ sprinter
 - "white" meat

Muscle fatigue

- Muscle fatigue
 - lack of sugar
 - lack of ATP to restore Ca⁺² gradient
 - ◆ low O₂
 - lactic acid drops pH which interferes with protein function
 - synaptic fatigue
 - loss of acetylcholine
- Muscle cramps
 - ATP depletion
 - build up of lactic acid
 - ◆ ion imbalance
 - massage or stretching increases circulation

Diseases of Muscle tissue

ALS

- amyotrophic lateral sclerosis
- ◆ Lou Gehrig's disease
- motor neurons degenerate
- Myasthenia gravis
 - auto-immune
 - antibodies to acetylcholine receptors

Botox

- Bacteria <u>Clostridium</u> <u>botulinum</u> toxin
 - blocks release of acetylcholine

AP Biology 2005-2006

Rigor mortis

- So why are dead people "stiffs"?
 - no life, no breathing
 - ◆ no breathing, no O₂
 - ♦ no O₂, no respiration
 - no respiration, no ATP
 - ◆ no ATP, no Ca⁺² pumps
 - ◆ Ca⁺² cannot be removed
 - continuous contraction
 - muscles are tensed
 - muscles stiffen after death
 - eventually tissues breakdown& relax

Any Questions??

AP Biology 2005-2006