PLANT ~ PART 4

TRANSPIRATION

TRANSPIRATION-COHESION-TENSION MECHANISM

 Water is pulled upward by 	pressure in the xylem
 Water vapor in the airspaces of potential gradient and exits the Transpiration producesleaf, which exerts a pulling force water into the leaf 	e leaf via
The all the way from the leaves to the soil solution	
 Transpirational pull is facilitate molecules to each other and molecules to cell walls 	

Transpiration-Cohesion-Tension Mechanism

Fig. 36-15

- The movement of xylem sap against gravity is maintained by the transpiration-cohesion-tension mechanism
- Transpiration _____water potential in leaves, and this generates negative pressure (tension) that ____water up through the _____
- There is no energy cost to bulk flow of xylem sap

- At night, when transpiration is very low, root cells continue pumping mineral ions into the xylem of the vascular cylinder, lowering the water potential
- Water flows in from the root cortex, generating **root pressure**
- Results in guttation→

What helps to regulate transpiration?

Mechanisms of stomatal opening and closing

Flg. 36-17a

Guard cells turgid/Stoma open Guard cells flaccid/Stoma closed

(a) Changes in guard cell shape and stomatal opening and closing (surface view)

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Berjamin Cumming

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Role of potassium in stomatal opening and closing

Stimuli for opening and closing stomata:

•	Generally, stomata open during the and close at
	to minimize water loss
•	Stomatal opening at dawn is triggered by,, and an internal "clock" in guard cells
•	All eukaryotic organisms have internal clocks;
	rhythms are 24-hour cycles